
CORRELATION  

The relationship between two are more more variables is called “correlation “  and the variables 

are said to be correlated. The relationship between two variables is also known as “ covariation”. The 

term relationship can be used in two different senses, viz, mutual dependence and cause and effect 

relationship. 

Mutual Dependence 

Consider the two variables, rate of oxygen consumption and metabolism in organisms. When 

the oxygen consumption increases, there is increase in the metabolism as well. Similarly when the 

organism increases its activity (metabolism ) it consumes more oxygen. On the other hand, when the 

oxygen consumption decreases, the activity, i.e., the metabolism decreases. When the organism 

becomes less active, its oxygen consumption also becomes lesser. A relationship between two variables 

in which a change in the value of one of the two variables brings about a change in the value of the 

other variable is said to be ‘mutually dependent’. 

Cause and Effect Relationship 

A relationship between two variables in which changes in the values of one variable is the cause 

of the changes in the values of the other variable is said to be ‘cause and effect relationship’ between 

the two variables. For example, consider the two variables, environmental temperature and the body 

temperature in the environment. When there is increase in the environmental temperature there is an 

increase in the body temperature. Here the increase in the environmental temperature is the ‘cause’ 

and the increase in the body temperature is the ‘effect’ .Such a relationship between two variables is 

known as ‘cause and effect’ relationship. 

The cause and effect relationship between two variables may be either direct or indirect.  



The nature of correlation between two variables need not be same at all times. For example, the 

relationship between height and weight of humans or the length and weight of organisms may not be 

same. Generally, with increase in the height or length, there is increase in the weight. However, it is 

common to see people who are tall weighing less and those who are short weighing heavier. 

Another important thing to be remembered is about “ non- sense” or “ spurious” correlation 

between variables. Any two variables, which do not have any logical or biological basis but show a 

statistical correlation, are said to have non-sense or spurious correlation. For instance, you may find a 

correlation   between the number of cellular phones and the number of mosquitoes in an area.  Unless 

we are able to establish a logical or biological background for a relationship between the above 

variables, it is a spurious correlation. 

TYPES OF CORRELATION 

Correlation between   variables may be simple or multiple. A simple correlation deals with only 

two variables where as a multiple correlation deals with more than two variables. We shall be discussing 

only the simple correlation. Correlation between two variables may be a positive correlation or a 

negative correlation. Whether it is positive or negative, it may be linear or non- linear. 

Positive Correlation 

A correlation between  two variables in which, with an increase in the  values of one variable the 

values  of the other variable also increases, and with a decrease in the value of the one variable the 

value of the other variable also decreases, is said  to be a positive correlation. In other words, in a 

positive correlation between two variables the values of both the variables move in the same direction. 

For example, the correlation between the environmental temperature and the body temperature of 

poikilotherms is a  positive correlation 



Negative Correlation 

A correlation between two variables in which when there is an increase in the values of one 

variable, the values of the other variable decreases, and when there is a decrease in the values of one  

variable the other variable increases, is said to be a negative  correlation the values of the two variables 

move in opposite direction. For example, the correlation between environmental temperature and 

bacterial growth, having a cause and effect relationship, is negative one. With an increase in the 

temperature the bacterial growth declines and with a decrease in the temperature the bacterial growth 

increases. 

Linear Correlation 

When the values of two variables vary in a constant ratio, the correlation between the two 

variables is said to be linear. The correlation between the optical density and the intensity of the colour 

of a solution is an example of linear correlation. The relationship between two variables could be 

classified either as linear or curvilinear. Relationship between two variables x and y is said to be linear if 

graph between x and y is represented in the form of straight line whereas if graph is represented by a 

curve, it is curvilinear.  Sine we shall confine our discussion in this book to linear relation only hence we 

can take a liberty to use the correlation term for linear relation. 

PEARSON PRODUCT MOMENT CORRELATION 

In order to measure the magnitude of linear relation between two variables, a coefficient known 

as product moment correlation coefficient is defined. It is denoted by r. For convenience we shall use 

the term correlation coefficient for product moment correlation coefficient. 

Product moment correlation coefficient is defined as an index which measures the linear relation 

between two variables and is denoted by r. 



The formula for r is 
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Limits of Correlation Coefficient 

The limit pf r is -1 to + 1 i.e., -1 1 r . The value of r = +1 indicates the perfect positive linear relation 

between the two variables x and y. In such situation increase (decrease) in x by any amount is followed 

by the increase (decrease) in y by the same amount and vice versa. The relationship between x and y is 

represented by a straight line making a 45 o angle with x axis and passing through origin. 

The value of r = -1 indicates the perfect negative linear relation between the two variables x and 

y. Here any amount of increase (decrease) in x is followed by the decrease ( increase) in y by the same 

amount and vice versa. The graph between x and y is a straight line making an angle of 45o with both the 

axis. 

r = 0 represents the absence of linear relation between x and y . Here increase or decrease in x 

does not effect y at all and vice versa. Here the graph) between x and y are straight lines either parallel 

to x or y. 

Example :  

 Compute the product moment correlation coefficient between the variables.   

X  X2  Y  Y2  XY  

27  729  20  400  540           

23  529                  24  576  552             



20  400  19  361  380 

25  625  18  324  450 

26  676  23  529  598 

19  361  20  400  380 

21  441  19  361  399 

20  400  21  441  420 

27  729  22  484  594 

22  484  18  324  396 
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Solution  

Here N=10 
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     = 0.2993 

SPEARMAN RANK ORDER CORRELATION 



 Rank correlation is used to find the linear correlation between the two variables where scores 

are in rank order.  It is represented by a greek letter  (rho). The formula   for is 
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where D: difference between the ranks.            N: number of paired scores. 

Rank correlation   is a non parametric statistic. Ranks assume only position of subjects or 

items in the series: no weightage is given for gaps or differences between adjacent scores. For example, 

individuals with scores 58, 56, 34 and 16 on a test would be ranked 1,2,3 and 4, although the difference 

between the first and second, second and third, and third and fourth scores are 2,22 and 18 

respectively.  

 

Use of Rank Correlation 

 Often we come across a situation where sport performance can not be measured objectively 

due to lack of any existing objective criteria, in such a situation evaluation of athlete is done by means of 

grading. For example in evaluating the dribbling performance in basketball or judging the passing 

accuracy in soccer can be done only through ranks. In a situation like this correlation between such 

variables could be measured only through rank correlation. If scores on one variable are ranks and that 

of other’s are actual measurements, the rank correlation is obtained by converting the actual 

measurements into their ranks. Further if both the variables are in score form, p can be obtained by 

converting these scores into their corresponding ranks. 

Example  

Consider an experiment in which judge’s marks were obtained. Calculate rank correlation between the 

two parameters. 



X   15 13 12 14 16 11 10 12 

Y 16 10 8 12 10 14 13 10 

Solution: Computation of rank correlation between the two parameters is shown in the following table. 

X                 Y         Rx Ry D= Rx- Ry D2 

Scores  Scores 

15  16  2 1  1 1 

13  10  4 6  -2 4 

12    8                       5.5           8                     -2.5          6.25  

14                         12                      3               4                       -1               1    

16  10  1 6  -5 25 

11  14  7 2  5 25 

10  13  8 3  5 25 

12  10  5.5 6  -0.5 0.25 

                -- ------  

         50.872D  

                --------- 
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   = 1-1.04 

   = -0.04          

Remarks 

In the above illustration a tie occurs in the X score 12, so both the scores were ranked by means 

of averaging their ranks, giving each a rank of 5.5. In Y scores too, three scores i.e. 10 had been tied and 

thus the ranks were averaged and this average rank of 6 was assigned to each score. 

Example  

Compute the rank order correlation. 

X 3.4 4.1 4.2 3.5 4.3 3.3 2.1 4.8 3.4 2.5 

Y 175 180 170 164 166 172 150 163 165 145 

Solution 

X   Y             Rx Ry D= Rx- Ry        D2 

3.4  175  6.5 2 4.5  20.25 

4.1  180  4 1 3  9 

4.2  170  3 4 -1  1 

3.5  164  5 7 -2  4 

4.3  166  2 5 -3  9 

3.3  172  8 3 5  25 



2.1  150  10 9 1  1 

4.8  163  1 8 -7  49 

3.4  165  6.5 6 0.5  0.25 

2.5  145  9 10 -1  1 

       ---------------- 

         50.1192D  

       ----------------- 
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Remark Significance of rank correlation can be tested in a manner similar to product moment 

correlation coefficient.  

PHI CORRELATION 

The phi correlation coefficient (phi) is one of a number of correlation statistics developed to 

measure the strength of association between two variables. The phi is a nonparametric statistic used in 

cross-tabulated table data where both variables are dichotomous. Dichotomous means that there are 

only two possible values for a variable.  

For a 2×2 contingency table where a, b, c, and d represent the observation frequencies (the cell count). 

The formula for phi is: 



 

Example: 

Find phi for the following contingency table: 

 

 

 

 

Solution: 

 Insert the counts into the formula and solve. 

Φ = ad – bc / √((a + b)(c + d)(a + c)(b + d)) 

Φ = 14*13 – 10*6 / √((14 + 10)(6 + 13)(14 + 6)(10 + 13)) 

Φ = 182 – 60 / √((24)(19)(20)(23)) 

Φ = 122/ √((24)(19)(20)(23)) 

Φ = 122/ 458 

Φ = 0.266. 

Phi Coefficient 

The phi coefficient is a symmetrical statistic, which means the independent 

variable and dependent variables are interchangeable. The interpretation for the phi coefficient is 

similar to the Pearson Correlation Coefficient. The range is from -1 to 1, where: 

 0 is no relationship. 

 1 is a perfect positive relationship: most of your data falls along the diagonal cells. 

 -1 is a perfect negative relationship: most of your data is not on the diagonal. 

 

BISERIAL CORRELATION  

A Biserial correlation is used to measure the strength and direction of the association that exists 

between one continuous variable and one dichotomous variable. It is a special case of the Pearson’s 



product-moment correlation, which is applied when you have two continuous variables, whereas in this 

case one of the variables is measured on a dichotomous scale. 

For example, use a Biserial correlation to determine whether there is an association between salaries, 

measured in US dollars, and gender (i.e., your continuous variable would be "salary" and your 

dichotomous variable would be "gender", which has two categories: "males" and "females"). Alternately 

Biserial correlation to determine whether there is an association between cholesterol concentration, 

measured in mmol/L, and smoking status (i.e., your continuous variable would be "cholesterol 

concentration", a marker of heart disease, and your dichotomous variable would be "smoking status", 

which has two categories: "smoker" and "non-smoker"). 

PARTIAL CORRELATION 

Correlation involved two variables only. There are situation in which more than two variables 

are related with each other. 

Definition  

Partial correlation is defined as linear relation between two variables after partialling out the 

effect of other variables. In most of the situations an investigator wishes to find the extent of actual 

relation between two variables. This could be obtained by partialling out the effect of other variables. 

Mathematically it cloud be done by means of partial correlation. 

Order of Partial Correlation 

Order of partial correlation depends upon the number of variables whose effects have to be partial out. 

Product moment correlation coefficient is known as zero order correlation as in this case none of the 

variable’s effect is eliminated. For each additional variable in the correlation the order is increased 

accordingly. Thus a first order correlation has three variables and a second order correlation has four 

variables. Further first order correlation is represented by 3..12r , Here correlation is obtained between 

first and second variable after eliminating the effect of third variable. Similarly second order partial 

correlation is represented by 34..12r  and in the same manner partial correlation of order n-2 is given by 

nr .................34567..12  

 



 

Computation of First Order Partial Correlation 

In first order partial correlation three variables are involved, out of which one variable is held constant. 

Let us consider that the variables are represented by 1.2 and 3 and if the  third variable is held constant. 

First order partial correlation is given by 
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Similarly  1.23r      and  2.13r  represent the first order partial correlation where first and second variables 

have been partialled out respectively. 

Thus 
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Example 

In an experiment conducted on fifteen school volleyball players, playing ability, height and arm length 

were measured. Product moment correlation among variables are shown in the compute 3.12r  and 2.13r  

Correlation matrix 

 x1   x2   x3 

 

     x1 

 

     x2 

 

     x3 

 

1.00   0.67   0.75 

 

1.00 0.94 

 

1.00 

 

      x1 : Playing ability     x2 : Height      x3 : Arm length 



Solution : 

(i) Since 
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General formula for Partial Correlation 

 

In case of n variables, partial correlation will be order n-2 and would be represented by r12.345……. n A 

General formula is given by 
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Remark Like product moment correlation coefficient, partial correlation also lies is between -1 to + 1. 

Limitations of Partial Correlation 

Like product moment correlation coefficient, partial correlation too measure linear relation only. Thus 

when we refer true relation between any two variables after partialling out the effects of other variables 



by means of partial correlation, we mean the linear relation only and it does not explain other type of 

relationship, 

Even after partialling out the effect of variables in partial correlation we may not be sure that it 

measures the true linear relation between the two variables as there may be many other causative 

factors which might be affecting the correlation and were not considered in partialling out the effects. 

Thus while partialling out the effect of variables one must explore the possibilities of all such variables 

which might be affecting the correlation coefficient. For instance partial correlation between height and 

weight after parialling out the effect of age may not explain the true linear relation between the height 

and weight of an individual as there may be other factors like height of one’s parent, socio economic 

status etc which might be affecting the relation between height and weight of an individual, whose 

effects have not been partialled out. 

Further large sample must be taken to calculate the partial correlation. This will give more reliable 

assessment about the true relationship between the two variables. 

Utilities of Partial Correlation 

Partial correlation has a special significance in research. We may be interested in knowing the fact that 

what are all parameters which affect the variables? Naturally there may be many parameters By 

computing zero order correlation coefficient if endurance is found to be highly associated with the 

variable 

Multiple Correlation  

If performance on 100 meter distance is to be estimated on the basis of few parameters like 

reaction time, acceleration speed maintenance level and deacceleration phase, it is essential to know 

how this group of parameters is related with it .  Multiple correlation is used as a yard stick in this regard 

Multiple correlation could be defined as the correlation between a group of variables and a single 

variable not included in that group. Multiple correlation is essentially a correlation between dependent 

variable and its expected values. These expected values are obtained through estimation by means of 

regression equation using the group of independent variables. 

Order of  Multiple Correlation 



Multiple correlation is represented by the symbol R along with subscripts like R 123 These 

subscripts represent the number of variables involved. The first subscript represents the dependent 

variable while subsequent subscripts represent independent variables. The first two subscript represent 

the zero order correlation and other orders start after second subscript. If n is the total number of  

variables in the multiple correlation., its order would be (n-2) .Thus first order  multiple correlation is 

R1.23 whereas R1.234 denotes second order. 

First order multiple correlation R1.23 is computed by the following formula 
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Limits of Multiple Correlation 

Limits of multiple correlation are from 0  to +1. Since the expression inside the square root 

should be positive in order to get the value of square root to be real, implies that R1.23  can not be 

negative.Thus 0 1 R . 

Remarks 

1. Multiple correlation is high if the correlation between independent variables are low. 

2. A multiple correlation will not be less than the highest zero order correlation with the 

dependent variable. 

3. Since multiple correlation is computed with product moment correlations, hence it also 

measures only linear relation. 

 

Use of Multiple Correlation 

As per the definition multiple correlation is a correlation between dependent variable and its 

expected values obtained by estimating from independent variables. Higher multiple correlation 

indicates that more accurate estimation of dependent variable is possible from independent variables. 

Thus multiple correlation provides an index of efficiency in estimation procedure. 



The above mentioned concept is very useful in research. Multiple correlation is helpful in 

selecting the most valid battery of test for forecasting a criterion. Thus this method may be used to 

show the importance of height, weight and shoulder strength in estimating the performance in shot put.  

If R1.234  is the multiple correlation, where shot put performance is dependent variable and height, 

weight and shoulder strength are independent variables, then efficiency of estimating the shot put 

performance on the basis of these three variables. 

 


